XPS Study on Valence Band Structures of Transition-Metal Trisulfides, TiS₃, NbS₃, and TaS₃

KAZUHIRO ENDO, HIDEO IHARA, KAZUHIRO WATANABE,* AND SHUN-ICHI GONDA

Electrotechnical Laboratory, 1-1-4, Umezono, Sakura-mura, Ibaraki, 305, Japan

Received January 5, 1981; in final form April 3, 1981

Transition-metal trisulfides, TiS_3 , NbS_3 , and TaS_3 , with a quasi-one-dimensional structure are investigated by X-ray photoelectron spectroscopic (XPS) measurements to obtain information on the valence band structures. The band structures at the Fermi level of these compounds correspond well to their transport properties. A shoulder is observed at the top of the valence band in NbS₃ and TaS₃, suggesting that this band is made up of the metal d_{z^2} electrons. The d_{z^3} band is occupied in NbS₃ and TaS₂ and empty in TiS₃. The characteristic features at the top of the valence band in NbS₃ imply the occurrence of d_{z^3} band separation, which leads to a semiconducting nature.

Introduction

In recent years, transition-metal trichalcogenides have attracted special attention, partly because of their quasi-one-dimensional character which leads to formation of a charge density wave (CDW) and partly because of the possibility of a one-dimensional superconductor with high transition temperature. All these compounds form needle-shaped crystals with the common structural feature that each metal atom lies at the center of a trigonal prism of chalcogen atoms; successive prisms are arranged in infinite chains along the *b* axis (1).

 TiS_3 is a typical compound of the group IV transition-metal trisulfides; and NbS_3 and TaS_3 is typical of the group V transi-

tion-metal trisulfides. In spite of the similarity of their crystal structures, there is a marked difference in the transport properties of TiS_3 , NbS_3 , and TaS_3 . TiS_3 (2, 3) and NbS_3 (4-6) are semiconductors and TaS_3 (7) is a metal. The transport properties are closely related to the valence band structure. To date, however, there is little knowledge of the band structure of these compounds. The purpose of the present study is to obtain a picture of the valence band structure for TiS₃, NbS₃, and TaS₃ by X-ray photoelectron spectroscopic (XPS) measurements and to find a correlation between the band structures and the characteristic transport properties of these compounds.

Experimental

The crystals used were grown by heating a mixture of sulfur and metal powder in an evacuated quartz ampoule in a furnace with

^{*} On leave of absence from The Faculty of Technology, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo, Japan.

a temperature gradient of 400 to 900°C. The shape of TiS₃ and NbS₃ crystals was thin and ribbon-like $0.5 \times 0.05 \times 10$ mm in size and that of TaS₃ was fiber-like and $0.04 \times 0.01 \times 10$ mm. In the case of the Ti-S system, in particular, the plate-like crystals of lT-TiS₂ with golden luster were obtained at the higher temperature side together with TiS_3 at the lower temperature side. These crystals were identified by an X-ray diffraction method. The quantity of impurities in these crystals was found to be under 1 ppm from X-ray fluorescence analysis, chemical analysis, and back-scattering methods. In our XPS spectra, no impurities have been detected. The semiconducting properties of TiS₃ and NbS₃ and the metallic properties of TaS₃ at room temperature are confirmed by measurements of the temperature dependence of resistivity over a wide temperature range from 4.2 to 650 K.

In the XPS measurements the crystals were taken out from the quartz ampoule and mounted on the sample holder in an atmosphere of argon and then introduced into the XPS analyzing chamber without being exposed to air. The XPS spectra were taken with an HP 5950A ESCA spectrometer at room temperature under a pressure of 10⁻⁹ Torr. The excitation source is a monochromatized AlK α line with the resolution energy 0.6 eV. The core-level spectra reveal that the samples are free from oxygen. The XPS measurements were carried out for several samples from different batches which were prepared under the same conditions.

Results and Discussion

Figure 1 shows the XPS valence band spectra of TiS_3 , NbS_3 , and TaS_3 . The Fermi level was determined from that of gold evaporated on the surface of the samples. The spectra of the three compounds differ markedly from each other in the following two respects.

FIG. 1. Valence band spectra of TiS_3 , NbS_3 , and TaS_3 by XPS measurements.

First, in TiS₃ and NbS₃ the Fermi level lies above the top of the valence band, which means that these compounds are semiconductors. In contrast, the Fermi level of TaS₃ is located at the top of the valence band. This means that TaS₃ is a metal. These results are consistent with those of the temperature dependence of the resistivity of TiS₃ (2, 3), NbS₃ (4-6), and TaS₃ (7).

Second, a shoulder is clearly observed at the top of the valence band in NbS₃ and TaS₃, whereas no shoulder appears in TiS₃. Nb and Ta belong to the group V elements and Ti is a group IV element. The ionic charges of transition-metal trichalcogenides MX_3 (*M*: transition-metal atom, *X*: chalcogen atom) are regarded as $M^{4+}X^{2-}(X_2)^{2-}$, although this formulation does not imply that the compounds are fully ionic (8, 9). The origin of the shoulder is likely to be the energy band caused by metal *d* electrons. According to the band calculation for NbS₃ by Bullet (10), an isolated band resulting from Nb-Nb bonds exists below the Fermi

FIG. 2. XPS valence band spectra (solid lines) of NbS_3 compared with the theoretical density of states (dashed lines). The XPS spectra were obtained by subtracting the background due to inelastically scattered electrons.

level, as shown in Fig. 2. The band observed as the shoulder is thought to be the band caused by metal d_{z^2} electrons. The energy dispersion curves for NbSe₃ calculated by Hoffmann (9) support the present inference. The absence of the shoulder in TiS₃, as shown in Fig. 1, suggests that the metal d_{z^2} band is empty. Thus, the metallic nature of TaS₃ seems to result from the partly occupied d_{z^2} band and also the semiconducting nature of TiS₃ from the empty d_{z^2} band. The situation mentioned above is schematically represented in Fig. 3a and c.

Here, a question arises. Whereas NbS₃ is a group V compound like TaS₃, why is NbS₃ a semiconductor and not a metal? From the present results that the Fermi level of NbS₃ lies above the shoulder derived from d electrons, we can guess that there occurs a separation of the metal d_{z^2}

FIG. 3. Energy band scheme of TiS_3 , NbS_3 , and TaS_3 . The hatched parts are occupied by electrons.

FIG. 4. Arrangement of metal atoms (open circles) along the *b* axis of NbS₃ and TaS₃. b_1 and b_2 are the lattice constants of NbS₃ and TaS₃, respectively. b' is the hypothetical distance between metal atoms in case of the arrangement in the equidistance, which is nearly equal to b_2 . k_1 and k_2 are wave vectors of NbS₃ and TaS₃, respectively.

band (see Fig. 1b and Fig. 3b). The origin of the band separation in NbS₃ is the doubling of the lattice in the axis direction, which is caused by formation of Nb–Nb pairs, as is revealed from the X-ray diffraction study (11) (see Fig. 4). Specifically, the d_{z^2} band opens at $b^*/2$ along the b^* axis of the reciprocal lattice. Such a situation does not occur in TaS₃, where the metal atoms are arranged with equal separation b_2 along the *b* axis.

The existence of Nb–Nb pairs in NbS_3 suggests the formation of the CDW at room temperature, although no CDW-normal phase transitions have been observed.

In conclusion, the XPS valence band spectra of TiS₃, NbS₃, and TaS₃ have been obtained. The band structures at the Fermi level correspond well to the facts that TiS₃ and NbS₃ are semiconducting and TaS₃ is metallic. Through the appearance of a shoulder at the top of the valence band of NbS₃ and TaS₃, we have shown that the metal d_{z^2} bands of NbS₃ and TaS₃ are fully and partly occupied, respectively, and that of TiS₃ is empty. Such a band model explains well the metallic nature of TaS₃ and the semiconducting nature of TiS₃. In particular, the semiconducting nature of NbS₃ was interpreted in terms of the metal d_{z^2} band separation resulting from doubling of the b axis.

References

- F. HULLIGER, in "Structural Chemistry of Layer-Type Phases" (F. Lévy, Ed.), p. 247. Reidel, Dordrecht (1976).
- K. ENDO, M. HIRABAYASHI, H. NAKAGAWA, AND S. GONDA, in "Abstracts of Papers, Japan Ceramic Society Meeting, Nagoya, May 16-17, 1979, Paper D31."
- 3. H. G. GRIMMEISS, A. RABENAU, H. HAHN, AND P. NESS, Z. Elektrochem. 65, 776 (1961).
- 4. L. A. GRIGORYAN AND A. V. NOVOSELOVA, Dokl. Akad. Nauk SSSR 144, 795 (1962).

- 5. F. KADIJK AND F. JELLINEK, J. Less Common Metals 19, 421 (1969).
- K. ENDO, M. HIRABAYASHI, AND S. GONDA, in "Abstracts of Papers, ACS/CSJ Chemical Congress, Hawaii, April 1-6, 1979, Part II, Phys. 220."
- 7. T. SAMBONGI, K. TSUTSUMI, Y. SHIOZAKI, M. YAMAMOTO, K. YAMAYA, AND Y. ABE, Solid State Commun. 22, 729 (1977).
- 8. F. JELLINEK, R. A. POLLAK, AND M. W. SHAFER, Mater. Res. Bull. 9, 845 (1974).
- 9. R. HOFFMANN, S. SHAIK, J. C. SCOTT, M.-H. WHANGBO, AND M. J. FOSHEE, J. Solid State Chem. 34, 263 (1980).
- 10. D. W. BULLET, J. Solid State Chem. 33, 17 (1980).
- 11. J. RIJINSDORP AND F. JELLINEK, J. Solid State Chem. 25, 325 (1978).